

Security Assessment Report

KZen - iOS application PT

Presented to

Yaron Hakon

 Application Security Expert & CEO, AppSec Labs

June 2019

© All Rights Reserved to AppSec Labs 2019
No part of this document or any of its contents may be reproduced, copied, modified or adapted, without the
prior written consent of the author, unless otherwise indicated for stand-alone materials.

2

Table of contents:

CHAPTER A – INTRODUCTION TO APPSEC ... 3

CHAPTER B – EXECUTIVE SUMMARY ... 4

GENERAL 4

TESTING METHODOLOGY 4

TESTING SCOPE 4

LIMITATIONS 4

CONCLUSIONS 4

CAUTIONARY NOTE 5

CHAPTER C – THREAT LEVEL METHODOLOGY ... 6

THREAT LEVEL OF THE VULNERABILITIES 6

APPENDIX A - LIST OF ATTACKS AND TESTS ... 7

© All Rights Reserved to AppSec Labs 2019
No part of this document or any of its contents may be reproduced, copied, modified or adapted, without the
prior written consent of the author, unless otherwise indicated for stand-alone materials.

3

Chapter A – Introduction to AppSec

AppSec Labs provides cutting edge professionalism and excellence in the field of application security.

Our expertise in security allows us to provide the correct solutions for our clients in each of their fields, from

hi-tech and software, through biomed and education as well as banking and finance, government, national

security, communications, e-commerce and IoT. This diverse customer-base enables us to maintain our

position at the forefront of technology.

Providing customers, a full range of application security services, including:

✓ R&D – security consulting throughout the R&D and design stages

✓ SDLC – secure development lifecycle implementation

✓ Training – our academy offers hands-on courses in application hacking and secure coding

✓ Security tests – application penetration testing for web, desktop, cloud, mobile and IoT applications

© All Rights Reserved to AppSec Labs 2019
No part of this document or any of its contents may be reproduced, copied, modified or adapted, without the
prior written consent of the author, unless otherwise indicated for stand-alone materials.

4

Chapter B – Executive Summary

General

AppSec Labs was requested by KZen to perform security assessment for the iOS Application during February

2019. AppSec Labs hereby confirms that the tests have been completed and the results were delivered to

KZen.

The following document summarizes the current security state of the iOS Application.

Testing methodology

The penetration testing cycle was performed using automated and manual tools, in order to cover a wide

range of applicative vulnerabilities as recommended by the OWASP and WASC methodologies.

A gray box approach was utilized during the tests. Gray box testing is a combination of both black and white

box testing and refers to testing a system while having at least some knowledge of the internals of a system.

The tests included access to the following resources:

• Interviews with developers

• Source code full access (mobile and server)

For a list of performed tests please refer to Appendix A.

Testing Scope

The following areas were covered and included in the testing scope for iOS Application security assessment:

• All tests were performed on the iOS application, version 2019.6.3.72806, and corresponding backend

server located at pentest.pingpong-service.com domain.

• Test environment: dedicated pent-test environment

• Users: self-enrolled

Limitations

The following limitations/disclaimers were taken into consideration while performing the security analysis:

• The goal of the penetration test is to provide an effective security evaluation of the system,

considering the testing scope, details and limitations. The goal is to perform a best effort to identify

and provide a list of unique security issues that can be used to exploit and jeopardize the system.

The report does not necessarily cover all instances of each vulnerability, and the suggested

mitigations should be implemented throughout the entire application, and not only for the provided

examples.

© All Rights Reserved to AppSec Labs 2019
No part of this document or any of its contents may be reproduced, copied, modified or adapted, without the
prior written consent of the author, unless otherwise indicated for stand-alone materials.

5

Conclusions

The system has been found to meet AppSec Labs’ security criteria as recommended by the OWASP and WASC

methodologies.

Based on the results of testing and verification process completed on June 2019, and in accordance with the

testing scope, details and limitations as stated in this document, AppSec Labs confirms that there are no

open critical-risk, high-risk, or medium-risk vulnerabilities identified at the time of report submission.

Cautionary note

The vulnerability assessment that AppSec Labs performed was based on past experiences, currently available

information, and known threats as of the date of testing. Given the constantly evolving nature of information

security threats and vulnerabilities, there can be no assurance that any assessment will identify all possible

vulnerabilities, or propose exhaustive and operationally viable recommendations to mitigate those exposures.

The statements relevant to the security of the iOS Application in this letter reflect the conditions found at the

completion of testing. In accepting our report, KZen has acknowledged the validity of the above cautionary

statement.

© All Rights Reserved to AppSec Labs 2019
No part of this document or any of its contents may be reproduced, copied, modified or adapted, without the
prior written consent of the author, unless otherwise indicated for stand-alone materials.

6

Chapter C – Threat Level Methodology

Threat level of the vulnerabilities

The severity of the vulnerabilities detected during the tests was determined using OWASP and WASC

methodologies. The following describes the impact of each threat level:

Critical

• A security breach that exposes a major security risk with a direct exploit (not needing user

involvement). If exploited, the security threat might cause major damage to the application and/or

have major impact on the company. The likelihood of such attack to occur is high, considering the

architecture/business-logic/complexity of the exploit.

High

• The weakness identified has the potential to directly compromise the confidentiality, integrity and /

or availability of the system or data, but the likelihood to occur is not high, considering the

architecture/business-logic/complexity of the exploit. The possible damage to the application or the

company is high, but not a total disaster.

• In applications involving sensitive data, the risk might be considered high in case the weakness by

itself is against common regulations (e.g. PCI).

Medium

• A medium security issue that imposes some affect/damage to the application. Often it cannot be

used directly, but can assist an attacker to launch further attacks.

Low

• No direct threat exists. It is a risk much more rather than a threat and does not cause damage by

itself. The vulnerability may be leveraged with other vulnerabilities in order to launch further attacks.

• The risk reveals technical information which might assist an attacker in launching future attacks.

© All Rights Reserved to AppSec Labs 2019
No part of this document or any of its contents may be reproduced, copied, modified or adapted, without the
prior written consent of the author, unless otherwise indicated for stand-alone materials.

7

Appendix A - List of Attacks and Tests

The following table is a generic list of tests performed by AppSec Labs during the original security testing

cycle (and NOT a list of vulnerabilities detected in the system). The list includes known attacks valid at the

time of the production of this report.

Category Test Name
Information Gathering Search engine discovery / reconnaissance

Web application fingerprint

Review Webpage Comments and Metadata for Information
Leakage

Application entry points Identification

Execution paths mapping

Web application framework fingerprinting

Web application fingerprinting

Application architecture mapping

Information Disclosure by error codes

SSL Weakness - SSL/TLS Testing (SSL Version, Algorithms, Key
length, Digital Cert. Validity)

Configuration and Deploy Management
Testing

Application Configuration management weakness

File extensions handling - sensitive information

Old, Backup and Unreferenced Files - Sensitive Information

Unauthorized Admin Interfaces access

HTTP Methods enabled, XST permitted, HTTP Verb

Http strict transport security

RIA cross domain policy

Role definitions enumeration

Vulnerable user registration process

Vulnerable account provisioning process

Permissions of Guest/Low Permission Accounts

Account suspension/resumption process

Authentication Testing Credentials Transported over Unencrypted Channel

User enumeration

Account lockout

Authentication bypass

"Remember password" functionality

Browser caching

Weak password policy

Weak password security mechanisms

Weak password change or reset flow

Race conditions

Weak multiple factors authentication

Weak CAPTCHA implementation

Weaker authentication in alternative channel

Authorization Testing Directory traversal/file inclusion

Authorization schema bypass

© All Rights Reserved to AppSec Labs 2019
No part of this document or any of its contents may be reproduced, copied, modified or adapted, without the
prior written consent of the author, unless otherwise indicated for stand-alone materials.

8

Privilege escalation

Insecure direct object references

Session Management Testing Session management bypass

Cookies are set without ‘HTTP Only’, ‘Secure’, and no time
validity

Session fixation

Exposed session variables

Cross site request forgery (CSRF)

Logout management

Session timeout

Session puzzling

Data Validation Testing Reflected cross site scripting

Stored cross site scripting

HTTP verb tampering

HTTP Parameter pollution / manipulation

SQL injection

LDAP injection

ORM injection

XML injection

SSI injection

Xpath Injection

IMAP/SMTP injection

Code injection

Local/remote file inclusion

Command injection

Buffer overflow

Heap overflow

Stack overflow

Format string manipulation

Incubated vulnerabilities

HTTP splitting/smuggling

Error Handling Analysis of Error Codes

Analysis of Stack Traces

Cryptography Weak SSL/TLS ciphers, insufficient transport layer protection

Padding oracle

Sensitive information sent via unencrypted channels

Business Logic Testing Business logic data validation

Ability to Forge Requests

Integrity checks

Process timing

Replay attack

Circumvention of Work Flows

Abuse of Functionality

File upload vulnerabilities

Client Side Testing DOM based Cross Site Scripting

Javascript Execution

Html/css injection

Client side url redirect

Client side resource manipulation

© All Rights Reserved to AppSec Labs 2019
No part of this document or any of its contents may be reproduced, copied, modified or adapted, without the
prior written consent of the author, unless otherwise indicated for stand-alone materials.

9

Cross origin resource sharing

Cross site flashing

Clickjacking / UI rendering

Web sockets

Web messaging

Local storage / session storage sensitive information

AJAX Testing AJAX weakness

Denial of Service Testing SQL Wildcard vulnerability

Locking customer accounts

Buffer overflows

User specified object allocation

User Input as a Loop Counter

Writing User Provided Data to Disk

Failure to Release Resources

Storing too Much Data in Session

Web Services Testing WS information gathering

WSDL weakness

Weak xml structure

XML content-level

WS HTTP GET parameters/REST

WS Naughty SOAP attachments

WS replay testing

